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Abstract 9 

This study assesses the usability of Weather Research and Forecasting (WRF) model simulated 10 

soil moisture for landslide monitoring in the Emilia Romagna region, northern Italy during the 10-11 

year period between 2006 and 2015. Particularly three advanced Land Surface Model (LSM) 12 

schemes (i.e., Noah, Noah-MP and CLM4) integrated with the WRF are used to provide 13 

comprehensive multi-layer soil moisture information. Through the temporal evaluation with the 14 

in-situ soil moisture observations, Noah-MP is the only scheme that is able to simulate the large 15 

soil drying phenomenon close to the observations during the dry season, and it also has the highest 16 

correlation coefficient and the lowest RMSE at most soil layers. Each simulated soil moisture 17 

product from the three LSM schemes is then used to build a landslide threshold model, and within 18 

each model, 17 different exceedance probably levels from 1% to 50% are adopted to determine 19 

the optimal threshold scenario (in total there are 612 scenarios). Slope degree information is also 20 

used to separate the study region into different groups. The threshold evaluation performance is 21 

based on the landslide forecasting accuracy using 45 selected rainfall events between 2014-2015. 22 

Contingency tables, statistical indicators, and Receiver Operating Characteristic analysis for 23 

different threshold scenarios are explored. The results have shown that the slope information is 24 

very useful in identifying threshold differences, with the threshold becoming smaller for the 25 
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steeper area. For landslide monitoring, Noah-MP at the surface soil layer with 30% exceedance 26 

probability provides the best landslide monitoring performance, with its hitting rate at 0.769, and 27 

its false alarm rate at 0.289.  28 

Keywords: Emilia Romagna, Weather Research and Forecasting (WRF) Model, Land Surface 29 

Model (LSM), Numerical Weather Prediction (NWP) model, landslide hazards, soil moisture. 30 

1. Introduction  31 

Landslide is a repeated geological hazard during rainfall seasons, which causes massive 32 

destructions, loss of lives, and economic damages worldwide (Klose et al., 2014). It is estimated 33 

between 2004 and 2016, there is a total number of 4862 fatal non-seismic landslides occurred 34 

around the world, which had resulted in the death of over 55,000 people (Froude and Petley, 2018). 35 

Those numbers are expected to further increase due to extreme events induced by climate changes 36 

and pressures of population expanding towards unstable hillside areas (Gariano and Guzzetti, 37 

2016;Petley, 2012). The accurate predicting and monitoring of the spatiotemporal occurrence of 38 

the landslide is the key to prevent/ reduce casualties and damages to properties and infrastructures. 39 

The most widely adopted method for real-time landslide monitoring is based on the simple 40 

empirical rainfall threshold, which has been used in many countries for their national landslide 41 

early warning system (Caine, 1980). The method commonly relies on building the rainfall 42 

intensity-duration curve using the information from the past landslide events (Chae et al., 2017). 43 

However, such a method in many cases is insufficient for landslide hazard assessment (Posner and 44 

Georgakakos, 2015), because in addition to rainfall, initial soil moisture condition is one of the 45 

main triggering factors of the events (Glade et al., 2000;Crozier, 1999;Tsai and Chen, 2010;Hawke 46 

and McConchie, 2011;Bittelli et al., 2012;Segoni et al., 2018;Valenzuela et al., 2018;Bogaard and 47 

Greco, 2018).  48 
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Although some researches have recognised the significance of soil moisture information for 49 

landslide early warning, most of them only rely on the antecedent precipitation index which simply 50 

depends on the amount of total rainfall accumulated before a landslide event occurs (Chleborad, 51 

2003;Calvello et al., 2015;Zêzere et al., 2005). Such a method is not recommended by several 52 

studies (Pelletier et al., 1997;Baum and Godt, 2010;Brocca et al., 2008), because during wet 53 

seasons, soil is often already saturated, and any additional rainfall falls on the earth surface will 54 

become direct runoff (Zhuo and Han, 2016b, a). As a result, the antecedent precipitation method 55 

can sometimes significantly overestimate the soil wetness condition. On the other hand, 56 

evapotranspiration is another factor which controls the soil moisture temporal evolution, which 57 

can also influence the relationship between the actual and the estimated soil moisture. Therefore, 58 

it is important that the landslide hazard assessment should be based on the real soil moisture 59 

information. 60 

Soil moisture varies largely both spatially and temporally (Zhuo et al., 2015b). For landslide 61 

applications, to accurately monitor soil moisture fluctuations in a critical zone (normally in remote 62 

regions), a dense network of soil moisture sensors is prerequisite. However, because of the 63 

complex installation and high maintenance fee especially in steep mountainous areas, such 64 

networks are normally unavailable. Several studies have found the usefulness of ground-measured 65 

soil moisture data for landslide monitoring purpose (Greco et al., 2010;Baum and Godt, 66 

2010;Harris et al., 2012;Hawke and McConchie, 2011). However, due to the sparse distribution/no 67 

existence of in-situ sensors in most hazardous regions, alternative soil moisture data sources need 68 

to be explored.  One of the data sources is through satellite remote sensing technologies. Although 69 

such technologies have been improved significantly over the past decade (Zhuo et al., 2016a), their 70 

retrieving accuracy is still largely affected by meteorological conditions (cloud coverage and 71 
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rainfall), frozen soil conditions (Zhuo et al., 2015a), and dense vegetation coverages particularly 72 

in mountainous regions (Temimi et al., 2010); furthermore, the acquired data only covers the top 73 

few centimetres of soil, and their resolution is too low (e.g., 0.25 degree) for detailed regional 74 

studies (Zhuo et al., 2016b). Those disadvantages restrict the full utilisation of satellite soil 75 

moisture products for landslide monitoring application as discussed in Zhuo et al. (2019).  76 

Another soil moisture data source relies on the state-of-the-art Land Surface Models (LSMs) such 77 

as the Noah LSM (Ek et al., 2003) and the Community Land Model (CLM) (Oleson et al., 2010). 78 

LSMs describe the interactions between the atmosphere and the land surface by simulating 79 

exchanges of momentum, heat and water within the Earth system (Maheu et al., 2018).  They are 80 

capable of simulating the most important subsurface hydrological processes (e.g., soil moisture) 81 

and can be integrated with the advanced Numerical Weather Prediction (NWP) system like WRF 82 

(Weather Research and Forecasting) (Skamarock et al., 2008) for comprehensive soil moisture 83 

estimations (i.e., through the surface energy balance, the surface layer stability and the water 84 

balance equations) (Greve et al., 2013). NWP-based (i.e., with integrated LSM, thereafter) soil 85 

moisture estimations have many advantages, for instance their spatial and temporal resolution can 86 

be set discretionarily to fit different application requirements; their coverage is global, and the 87 

estimated soil moisture data covers multiple soil layers (from the shallow surface layer to deep 88 

root-zones); as well as a number of globally-covered data products can provide the necessary 89 

boundary and initial conditions for running the models. Soil moisture estimated through such an 90 

approach has been widely recognised and demonstrated in many studies, which cover a broad 91 

range of applications from hydrological modelling (Srivastava et al., 2013a;Srivastava et al., 2015), 92 

drought studies (Zaitchik et al., 2013), flood investigations (Leung and Qian, 2009), to regional 93 

weather prediction (Stéfanon et al., 2014). Therefore, NWP-based soil moisture datasets could 94 
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provide valuable information for landslide applications. However, to our knowledge, relevant 95 

research has never been carried out.  96 

The aim of this study hence is to evaluate the usefulness of NWP modelled soil moisture for 97 

landslide monitoring. Here the advanced WRF model (version 3.8) is adopted, because it offers 98 

numerous physics options such as micro-physics, surface physics, atmospheric radiation physics, 99 

and planetary boundary layer physics (Srivastava et al., 2015), and can integrate with a number of 100 

LSM schemes, each varying in physical parameterisation complexities. So far there is limited 101 

literature in comparing the soil moisture accuracy of different LSMs options in the WRF model. 102 

Therefore, in this study, we select three of the WRF’s most advanced LSM schemes (i.e., Noah, 103 

Noah-Multiparameterization (Noah-MP), and CLM4) to compare their soil moisture performance 104 

for landslide hazard assessment. Furthermore, since all the three schemes can provide multi-layer 105 

soil moisture information, it is useful to include all those simulations for the comparison so that 106 

the optimal depth of soil moisture could be determined for the landslide monitoring application. 107 

The large physiographic variability, plus the abundance of the historical landslide events data, 108 

makes Italy a good place for this research. Here an Italian region called Emilia Romagna is selected. 109 

The study period covers 10 years from 2006 to 2015 to include a long-term record of landslide 110 

events. In addition, because slope angle is a major factor controlling the stability of slope, it is 111 

hence used in this study to divide the study area into several slope groups, so that a more accurate 112 

threshold model could be built. 113 

The description of the study area and the used datasets are included in Section 2. Methodologies 114 

regarding the WRF model, the related LSM schemes and the adopted landslide threshold 115 

evaluation approach are provided in Section 3. Section 4 shows the WRF soil moisture evaluation 116 

results against the in-situ observations. Section 5 covers the comparison results of the WRF 117 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-95
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 22 March 2019
c© Author(s) 2019. CC BY 4.0 License.



 

6 
 

modelled soil moisture products for landslide applications. The discussion and conclusion of the 118 

study are included in Section 6.  119 

2. Study Area and Datasets 120 

2.1 Study Area 121 

The study area is in the Emilia Romagna Region, northern Italy (Figure 1). Its population density 122 

is high. The region has high mountainous areas in the S-SW, and wide plain areas towards NE, 123 

with a large elevation difference (i.e., 0 m to 2125 m) across 50 km distance from the north to the 124 

south. The region has a mild Mediterranean climate with distinct wet and dry seasons (i.e., dry 125 

season between May and October, and wet season between November and April). The study area 126 

tends to be affected by landslide events easily, with one-fifth of the mountainous zone covered by 127 

active or dormant landslide deposits. Rainfall is by far the primary triggering factor of landslides 128 

in the region, followed by snow melting: shallow landslides are triggered by short but 129 

exceptionally intense rainfall, while deep-seated landslides have a more complex response to 130 

rainfall and are mainly caused by moderate but exceptionally prolonged (even up to 6 months) 131 

periods of rainfalls (Segoni et al., 2015).  132 

2.2 Selection of The Landslide Events  133 

The landslides catalog is collected from the Emilia Romagna Geological Survey (Berti et al., 2012). 134 

The information included in the catalog are: location, date of occurrence, the uncertainty of date, 135 

landslide characteristics (dimensions, type, and material), triggering factors, damages, casualties, 136 

and references. Unfortunately, many of the information are missing from the records in many cases. 137 

In order to organise the data in a more systematic way so that only the relevant events are retained, 138 

a two-step event selection procedure is initially carried out based on: 1) rainfall-induced only; and 139 
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2) high spatial-temporal accuracy (exact date and coordinates). Finally, a revision of the 140 

information about the type of slope instabilities such as landslide/debris flow/rockfall and the 141 

characteristics of the affected slope (natural or artificial) is also carried out over the selected 142 

records (Valenzuela et al., 2018). The catalog period used in this study covers between 2006 and 143 

2015, which is in accordance with the WRF’ model run. After filtering the data records, only one-144 

fifths of them (i.e., 157 events) is retained. The retained events are shown as single circles in Figure 145 

2, with slope information (calculated through the Digital Elevation Model (DEM) data) also 146 

presented in the background.  It can be seen the spatial distribution of the occurred landslide events 147 

is very heterogeneous, with nearly all of them occurred in the hilly regions. During the study period, 148 

the regional landslide occurrence is mainly dominated by the spatial distribution of the weak earth 149 

units and the critical rainfall periods. 150 

2.3 Datasets 151 

There is a total of 19 soil moisture stations available within the study area, however only one of 152 

them at the San Pietro Capofiume (latitude 44° 39' 13.59", longitude 11° 37' 21.6") provides long-153 

term valid soil moisture retrievals (i.e., 2006 to 2017). We have checked the data from all the rest 154 

of the stations, they are either absent (or have very big data gaps) or do not cover the research 155 

period at all. Therefore, only the San Pietro Capofiume station is used for the WRF soil moisture 156 

temporal evaluation. The soil moisture is measured from 10 cm to 180 cm deep in the soil at 5 157 

depths, by the Time Domain Reflectometry (TDR) instrument. Data are recorded in the unit of 158 

volumetric water content (m3/m3) and at daily timestep (Pistocchi et al., 2008). The data used in 159 

this study is between 2006 and 2015. In order to select rainfall events for Year 2014 and 2015, 160 

data from 200 tipping-bucket rain gauges are collected and analysed within the region. 161 
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To drive a NWP model like WRF for soil moisture simulations, several globally-coved data 162 

products can be chosen for extracting the boundary and initial conditions information, for instance, 163 

the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) 164 

and the National Centre for Environmental Prediction (NCEP) reanalysis are two of the most 165 

commonly used data products. It has been found by  Srivastava et al. (2013b) that the ERA-Interim 166 

datasets can provide better boundary conditions than the NCEP datasets for WRF hydro-167 

meteorological predictions in Europe, which is therefore adopted in this study to drive the WRF 168 

model. The spatial resolution of the ERA-Interim is approximately 80 km. The data is available 169 

from 1979 to present, containing 6-hourly gridded estimates of three-dimensional meteorological 170 

variables, and 3-hourly estimates of a large number of surface parameters and other two-171 

dimensional fields. A comprehensive description of the ERA-Interim datasets can be found in (Dee 172 

et al., 2011) 173 

The Shuttle Radar Topography Mission (SRTM) 3 Arc-Second Global (~ 90m) DEM datasets is 174 

downloaded and used as the basis for the slope degree calculations. SRTM DEM data has been 175 

widely used for elevation related studies worldwide due to its high quality, near-global coverage, 176 

and free availability (Berry et al., 2007).  177 

3. Methodologies 178 

3.1 WRF Model and The Three Land Surface Model Schemes 179 

The WRF model is a next-generation, non-hydrostatic mesoscale NWP system designed for both 180 

atmospheric research and operational forecasting applications (Skamarock et al., 2005). The model 181 

is powerful enough in modelling a broad range of meteorological applications vary from tens of 182 

metres to thousands of kilometres (NCAR, 2018). It has two dynamical solvers: the ARW 183 
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(Advanced Research WRF) core and the NMM (Nonhydrostatic Mesoscale Model) core. The 184 

former has more complex dynamic and physics settings than the latter which only has limited 185 

setting choices. Hence in this study WRF with ARW dynamic core (version 3.8) is used to perform 186 

all the soil moisture simulations.  187 

The main task of LSM within the WRF is to integrate information generated through the surface 188 

layer scheme, the radiative forcing from the radiation scheme, the precipitation forcing from the 189 

microphysics and convective schemes, and the land surface conditions to simulate the water and 190 

energy fluxes (Ek et al., 2003). WRF provides several LSM options, among which three of them 191 

are selected in this study as mentioned in the introduction: Noah, Noah-MP, and CLM4. Table 1 192 

gives a simple comparison of the three models. The detailed description of the models is written 193 

below in the order of increasing complexity in regards of the way they deal with thermal and 194 

moisture fluxes in various layers of soil, and their vegetation, root and canopy effects 195 

(Skamarock et al., 2008).  196 

3.1.1 Noah 197 

Noah is the most basic amongst the three selected LSMs. It is one of the ‘second generation’ LSMs 198 

that relies on both soil and vegetation processes for water budgets and surface energy closures 199 

(Wei et al., 2010). The model is capable of modelling soil and land surface temperature, snow 200 

water equivalent, as well as the general water and energy fluxes. The model includes four soil 201 

layers that reach a total depth of 2 m in which soil moisture is calculated. Its bulk layer of  canopy 202 

-snow-soil (i.e., lack the abilities in simulating photosynthetically active radiation (PAR), 203 

vegetation temperature, correlated energy, and water, heat and carbon fluxes), ‘leaky’ bottom (i.e., 204 

drained water is removed immediately from the bottom of the soil column which can result in 205 

much fewer memories of antecedent weather and climate fluctuations) and simple snow melt-thaw 206 
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dynamics are seen as the model’s demerits (Wharton et al., 2013). Noah calculates the soil moisture 207 

from the diffusive form of Richard’s equation for each of the soil layer (Greve et al., 2013), and 208 

the evapotranspiration from the Ball-Berry equation (considering both the water flow mechanism 209 

within soil column and vegetation, as well as the physiology of photosynthesis (Wharton et al., 210 

2013)).  211 

3.1.2 Noah-MP 212 

Noah-MP (Niu et al., 2011) is an improved version of the Noah LSM, in the aspect of better 213 

representations of terrestrial biophysical and hydrological processes. Major physical mechanism 214 

improvements directly relevant to soil water simulations include: 1) introducing a more permeable 215 

frozen soil by separating permeable and impermeable fractions (Cai, 2015), 2) adding an 216 

unconfined aquifer immediately beneath the bottom of the soil column to allow the exchange of 217 

water between them (Liang et al., 2003), and 3) the adoption of a TOPMODEL (TOPography 218 

based hydrological MODEL)-based runoff scheme  (Niu et al., 2005) and a simple SIMGM 219 

groundwater model (Niu et al., 2007) which are both important in improving the modelling of soil 220 

hydrology. Noah-MP is unique compared with the other LSMs, as it is capable of generating 221 

thousands of parameterisation schemes through the different combinations of “dynamic leaf, 222 

canopy stomatal resistance, runoff and groundwater, a soil moisture factor controlling stomatal 223 

resistance (the β factor), and six other processes” (Cai, 2015). The  scheme option used in the study 224 

are: Ball-Berry scheme for canopy stomatal resistance, Monin-Obukhov scheme for surface layer 225 

drag coefficient calculation, the Noah based soil moisture factor for stomatal resistance, the 226 

TOPMODEL runoff with the SIMGM groundwater, the linear effect scheme for soil permeability, 227 

the two-stream applied to vegetated fraction scheme for radiative transfer, the CLASS (Canadian 228 
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Land Surface Scheme) scheme for ground surface albedo option, and the Jordan (Jordan, 1991) 229 

scheme for partitioning precipitation between snow and rain. 230 

3.1.3. CLM4 231 

CLM4 is developed by the National Center for Atmospheric Research (NCAR) to serve as the land 232 

component of its Community Earth System Model (formerly known as the Community Climate 233 

System Model) (Lawrence et al., 2012). It is a ‘third generation’ model that incorporates the 234 

interactions of both nitrogen and carbon in the calculations of water and energy fluxes. Compared 235 

with its previous versions, CLM4 (Oleson et al., 2008) has multiple enhancements relevant to soil 236 

moisture computing. For instance, the model’s soil moisture is estimated by adopting a improved 237 

one-dimensional Richards equation (Zeng and Decker, 2009); the new version allows the dynamic 238 

interchanges of soil water and groundwater through an improved definition of the soil column’s 239 

lower boundary condition  that is similar to the Noah-MP’s (Niu et al., 2007). Furthermore, the 240 

thermal and hydrologic properties of organic soil are included for the modelling which is based on 241 

the method developed in (Lawrence and Slater, 2008). The total ground column is extended to 42 242 

m depth, consisting 10 soil layers unevenly spaced between the top layer (0.0–1.8 cm) and the 243 

bottom layers (229.6–380.2 cm), and 5 bedrock layers to the bottom of the ground column 244 

(Lawrence et al., 2011). Soil moisture is estimated for each soil layer.  245 

3.2 WRF Model Parameterization 246 

The WRF model is centred over the Emilia Romagna Region with three nested domains (D1, D2, 247 

D3 with the horizontal grid sizes of 45 km, 15 km, and 5 km, respectively), of which the innermost 248 

domain (D3, with 88 x 52 grids (west-east and south-north, respectively)) is used in this study. A 249 

two-way nesting scheme is adopted allowing information from the child domain to be fed back to 250 
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the parent domain. With atmospheric forcing, static inputs (e.g., soil and vegetation types), and 251 

parameters, the WRF model needs to be spun-up to reach its equilibrium state before it can be used 252 

(Cai et al., 2014;Cai, 2015).  In this study, WRF is spun-up by running through the whole year of 253 

2005. After spin-up, the WRF model for each of the selected LSM scheme is executed in daily 254 

timestep from January 1, 2006, to December 31, 2015, using the ERA-Interim datasets.  255 

The microphysics scheme plays a vital role in simulating accurate rainfall information which in 256 

turn is important for modelling the accurate soil moisture variations. WRF V3.8 is supporting 23 257 

microphysics options range from simple to more sophisticated mixed-phase physical options. In 258 

this study, the WRF Single-Moment 6-class scheme is adopted which considers ice, snow and 259 

graupel processes and is suitable for high-resolution applications (Zaidi and Gisen, 2018). The 260 

physical options used in the WRF setup are Dudhia shortwave radiation (Dudhia, 1989) and Rapid 261 

Radiative Transfer Model (RRTM) longwave radiation (Mlawer et al., 1997). Cumulus 262 

parameterization is based on the Kain-Fritsch scheme (Kain, 2004) which is capable of 263 

representing sub-grid scale features of the updraft and rain processes, and such a capability is 264 

beneficial for real-time modelling (Gilliland and Rowe, 2007).  The surface layer parameterization 265 

is based on the Revised fifth-generation Pennsylvania State University–National Center for 266 

Atmospheric Research Mesoscale Model (MM5) Monin-Obukhov scheme (Jiménez et al., 2012). 267 

The Yonsei University scheme (Hong et al., 2006) is selected to calculate the planetary boundary 268 

layer. The parameterization schemes used in the WRF modelling are shown in Table 2. The 269 

datasets for land use and soil texture are available in the pre-processing package of WRF. In this 270 

study, the land use categorisation is interpolated from the MODIS 21-category data classified by 271 

the International Geosphere Biosphere Programme (IGBP). The soil texture data are based on the 272 

Food and Agriculture Organization of the United Nations Global 5-minutes soil database. 273 
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3.3 Translation of Observed and Simulated Soil Moisture Data to Common Soil Layers 274 

Since all soil moisture datasets have different soil depths, it is difficult for a direct comparison. 275 

The Noah and Noah-MP models include four soil layers, centred at 5, 25, 70, and 150 cm, 276 

respectively. Whereas CLM4 model has 10 soil layers, centered at 0.9, 3.2, 6.85, 12.85, 22.8, 39.2, 277 

66.2, 110.65, 183.95, 304.9 cm, respectively. Moreover, the in-situ sensor measures soil moisture 278 

centred at 10, 25, 70, 135, and 180 cm. In order to tackle the inconsistency issue of soil depths, the 279 

simple linear interpolation approach described in Zhuo et al. (2015b) is applied in this study, and 280 

a benchmark of soil layer centred at 10, 25, 70 and 150 cm is adopted. 281 

3.4 Soil Moisture Thresholds Build Up and Evaluations 282 

To build and evaluate the soil moisture thresholds for landslides forecasting, all datasets have been 283 

grouped into two portions: 2006-2013 for the establishment of thresholds, and 2014-2015 for the 284 

evaluation. The determination of soil moisture thresholds is based on determining the most suitable 285 

soil moisture triggering level for landslides occurrence by trying a range of exceedance 286 

probabilities (percentiles). For example, a 10% exceedance probability is calculated by 287 

determining the 10% percentile result of the soil moisture datasets that is related to the occurred 288 

landslides. The exceedance probability method is commonly utilised in landslide early warning 289 

studies for calculating the rainfall-thresholds, which is therefore adopted here to examine its 290 

performance for soil moisture threshold calculations.   291 

To carry out the threshold evaluation, 45 rainfall events (during 2014-2015) are selected for the 292 

purpose. The rainfall events are separated based on at least one-day of dry period (i.e., a period 293 

without rainfall) (Dai et al., 2014;Dai et al., 2015;Dai et al., 2016). The rainfall data from each rain 294 

gauge station is firstly combined using the Thiessen Polygon method, and with visual analysis, the 295 
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45 events are then finally selected. The information about the selected rainfall events can be found 296 

in Section 5. The threshold evaluation is based on the statistical approach described in Gariano et 297 

al. (2015) and Zhuo et al. (2019), where soil moisture threshold can be treated as a binary classifier 298 

of the soil moisture conditions that are likely or unlikely to cause landslide events. With this 299 

hypothesis, the likelihood of a landslide event can either be true (T) or false (F), and the threshold 300 

forecasting can either be positive (P) or negative (N). The combinations of those four conditions 301 

can lead to four statistical outcomes (Figure 3a) that are: true positive (TP), true negative (TN), 302 

false positive (FP), and false negative (FN) (Wilks, 2011). The detailed description of each 303 

outcome is covered in Zhuo et al. (2019). Using the four outcomes, two statistical scores can be 304 

determined. 305 

The Hit Rate (HR), which is the rate of the events that are correctly forecasted. Its formula is: 306 

𝐻𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (1) 307 

in the range of 0 and 1, with the best result as 1.                                        308 

The False Alarm Rate (FAR), which is the rate of false alarms when the event did not occur. Its 309 
formula is: 310 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                               (2) 311 

in the range of 0 and 1, with the best result as 0. 312 

For any soil moisture product, each threshold calculated for each of the slope degree group is 313 

adopted to determine T, F, P, and N, respectively. Those values are finally integrated to find the 314 

overall scores of TP, FN, FP, TN, HR, and FAR. The threshold performance is then judged via the 315 

Receiver Operating Characteristic (ROC) analysis (Hosmer and Lemeshow, 1989;Fawcett, 2006). 316 

As shown in Figure 3b, ROC curve is based on HR against FAR, and each point in the curve 317 

represents a threshold scenario (i.e., selected exceedance probabilities). The optimal result (the red 318 

point) can only be realised when the HR reaches 1 and the FAR reduces to 0. The closer the point 319 
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to the red point, the better the forecasting result is. To analyse and compare the forecasting 320 

performance numerically, the Euclidean distances (d) for each scenario to the optimal point are 321 

computed.  322 

4. WRF Soil Moisture Analysis and Evaluations  323 

4.1 Temporal Comparisons  324 

Although there is only one soil moisture sensor that provides long-term soil moisture data in the 325 

study region, it is still useful to compare it with the WRF estimated soil moisture. Particularly, it 326 

has been shown that soil moisture measured at a site location can reflect the temporal fluctuations 327 

of soil moisture for its surrounding region, up to 500 km in radius (Entin et al., 2000). With the 328 

WRF’s relatively high-resolution of 5 km, the temporal comparison with the in-situ observations 329 

should provide some meaningful results. In this study, we carry out a temporal comparison 330 

between all the three WRF soil moisture products with the in-situ observations. The comparison 331 

is implemented over the period from 2006 to 2015, and the WRF grid closest to the in-situ sensor 332 

location is chosen. Figure 4 shows the comparison results at the four soil depths. The statistical 333 

performance (correlation coefficient r and Root Mean Square Error RMSE) of the three LSM 334 

schemes are summarised in Table 3. Based on the statistical results, Noah-MP surpasses other 335 

schemes at most soil layers, except for layer 2 where CLM4 shows stronger correlation and layer 336 

4 where Noah gives smaller RMSE error. For Noah-MP, the best correlation is observed at the 337 

surface layer (0.809), followed by third (0.738), second (0.683) and fourth (0.498) layers; and 338 

based on RMSE, the best performance is again observed at the surface layer and followed by 339 

second, third and fourth layers in sequence (as 0.060, 0.070, 0.088, and 0.092 m3/m3, respectively). 340 

From the temporal plots, it can be seen at all four soil layers, all three LSM schemes can produce 341 
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soil moisture’s seasonal cycle very well with most upward and downward trends successfully 342 

represented. However, both the Noah and the CLM4 overestimate the variability at the upper two 343 

soil layers during almost the whole study period, and the situation is the worst for the Noah. 344 

Comparatively, the Noah-MP can capture the wet soil moisture conditions very well especially at 345 

the surface layer; and it is the only model of the three that is able to simulate the large soil drying 346 

phenomenon close to the observations during the dry season, except for some extremely dry days. 347 

Towards 70 cm depth, although Noah-MP is still able to capture most of the soil moisture 348 

variabilities during the drying period, it significantly underestimates soil moisture values for most 349 

wet days. Similar underestimation results can be observed for CLM4 and Noah during the wet 350 

season at 70 cm; furthermore, both schemes are again not capable of reproducing the extremely 351 

drying phenomenon and overestimate soil moisture for most of the dry season days. It is surprising 352 

to see that at the deep soil layer (150 cm), all soil moisture products are underestimated, in 353 

particular, the outputs from the CLM4 and the Noah-MP only show small fluctuations. However, 354 

the soil moisture measurements from the in-situ sensor also get our attention as they show strange 355 

fluctuations with numerous sudden drops and rise situations observed. The strange phenomenon 356 

is not expected at such a deep soil layer (although groundwater capillary forces can increase the 357 

soil moisture, its rate is normally very slow). One possible reason we suspect is due to sensor 358 

failure in the deep zone. Overall for the Noah-MP, in addition to producing the highest correlation 359 

coefficient and the lowest RMSE, its simulated soil moisture variations are the closest to the 360 

observations. The better performance of the Noah-MP over the other two models agrees with the 361 

results found in Cai et al. (2014) (note: the paper uses standalone models, which are not coupled 362 

with WRF). Also, it has been discussed in Yang et al. (2011), the Noah MP presents a clear 363 

improvement over the Noah in simulating soil moisture globally. 364 
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4.2 Spatial Comparisons  365 

Figure 5, 6 shows the spatial distribution of soil moisture simulations (via the three WRF LSM 366 

schemes) at the four soil layers on a typical day during the dry and the wet seasons, respectively. 367 

It is clear to see on the dry season day, Noah gives the wettest soil moisture simulation amongst 368 

the three schemes, followed by CLM4 and Noah-MP. The soil moisture spatial pattern of the three 369 

schemes more or less agrees with each, that is with wetter soil condition found in the central (in 370 

line with the location of the river mainstream) and South-West part of the study region and dryer 371 

soil condition in the Southern boundary and East part of the study region. On the wet season day, 372 

Noah again produces wetter soil moisture data than the other two schemes, and it shows a distinct 373 

wet patch at the Southern boundary while both the Noah-MP and the CLM4’s simulations indicate 374 

that part as the driest of the whole region. The disagreement among the LSMs at the Southern 375 

boundary could be due to the particularly high elevation (above 2000 m) and snow existence at 376 

that region, and the three schemes use different theories to deal with such conditions. The 377 

improvement in the Noah-MP and the CLM4 is mainly attributed to the better simulation of snow, 378 

in particular, it has been found Noah-MP can better simulate the snowmelt phenomenon over the 379 

other two schemes (Cai et al., 2014), because it has better representations of ground heat flux, 380 

retention, percolation and refreezing of melted liquid water within the multilayer snowpack (Yang 381 

et al., 2011). Furthermore, it can be seen Noah-MP has a clear spatial pattern of the soil moisture 382 

in the region, that is with drier areas found near the river mainstream, and Southern boundary, and 383 

wetter zones in the North and the South. On the contrary, Noah and CLM4 simulated soil moisture 384 

show a relatively smaller difference spatially, especially for CLM4.  385 

5. The Assessment of WRF Soil Moisture Threshold for Landslide Monitoring 386 
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This section is to assess if the spatial distribution of soil moisture can provide useful information 387 

for landslide monitoring at the regional scale. Particularly, all three soil moisture products 388 

simulated through the WRF model are used to derive threshold models, and the corresponding 389 

landslide prediction performances are then compared statistically. Here the threshold is defined as 390 

the crucial soil moisture condition above which landslides are likely to happen.   391 

Among different factors for controlling the stability of slope, the slope angle is one of the most 392 

critical ones. From the slope angle map in Figure 2, it can be seen the region has a clear spatial 393 

pattern of high and low slope areas, with the majority of the high-slope areas (can be as steep as 394 

around 40 degrees) located in the mountainous Southern part and the river valleys. Moreover, there 395 

is an obvious causal relationship between the slope angle and the landslide occurrence, as all the 396 

landslides happened during the study period are located in the high-slope region, with a particularly 397 

high concentration around the central Southern part. The spatial distribution of the landslide events 398 

is also in line with the overall geological characteristics of the region, i.e., the Southern part mainly 399 

constitutes outcrop of sandstone rocks that make up the steep slopes and are covered by a thin 400 

layer of permeable sandy soil, which are highly unstable (Zhuo et al., 2019). Therefore, instead of 401 

only using one soil moisture threshold for the whole study area, it is useful to divide the region 402 

into several slope groups so that within each group a threshold model is built. To derive soil 403 

moisture threshold individually under different slope conditions, all data has been divided into 404 

three groups based on the slope angle (0.4-1.86o; 1.87-9.61o; 9.52-40.43o; since no landslide events 405 

are recorded under the 0-0.39o group, the group is not considered here), as results,  all groups have 406 

equal coverage areas.  407 

In order to find the optimal threshold so that there are least missing alarms (i.e., threshold is 408 

overestimated) and false alarms (i.e., threshold is underestimated), we test out 17 different 409 
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exceedance probabilities from 1% to 50%. For each LSM scheme, the total number of threshold 410 

models is 204, which is the resultant of different combinations of slope groups, soil layers, and 411 

exceedance probability conditions. The calculated thresholds for all LSM schemes under three 412 

slope groups are plotted in Figure 7. Overall there is a very clear trend between the slope angle 413 

and the soil moisture threshold, that is with threshold becoming smaller for steeper areas. The 414 

correlation is particularly evident at the upper three soil layers (i.e., the top 1 m depth of soil), with 415 

only a few exceptions for Noah and CLM4 at the 1% and the 2% exceedance probabilities.  At the 416 

deep soil layer centred at 150 cm, the soil moisture threshold difference between Slope Group 417 

(S.G.) 2 and 3 becomes very small for all the three LSM schemes. This could be partially because 418 

at the deep soil layer, the change of soil moisture is much smaller than at the surface layer, therefore 419 

the soil moisture values for S.G. 2 and 3 could be too similar to differentiate. However, for milder 420 

slopes (S.G. 1), the higher soil moisture triggering level always applies even down to the deepest 421 

soil layer for all the three LSM schemes. It is also clear to see the difference of threshold values 422 

amongst different slope groups largely depends on the number of landslide events considered, that 423 

is with more events considered, the stronger the correlation  (e.g., 1% exceedance probability 424 

means 99% of the events are included for the threshold modelling, whilst 50% exceedance 425 

probability means half of the data are treated as outliers). The results confirm that wetter soil 426 

indeed can trigger shallow landslides easier in milder slopes than in steeper slopes.  427 

All the threshold models are then evaluated under the 45 selected rainfall events (Table 4) using 428 

the ROC analysis. The period of the selected rainfall events is between 1 day and 18 days, and the 429 

average rainfall intensity ranges from 5.05 mm/day to 24.69 mm/day. For each selected event, the 430 

number of landslide event is also summarised in the table. The resultant Euclidean distances (d) 431 

between each scenario of exceedance probability and the optimal point for ROC analysis are listed 432 
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in Table 5 for all three WRF LSM schemes at the tested exceedance probabilities. The best 433 

performance (i.e., lowest d) in each column (i.e., each soil layer of an LSM scheme) is highlighted. 434 

In addition, the d results are also plotted in Figure 8 to give a better view of the overall trend 435 

amongst different soil layers and LSM schemes. From the figure, for all three LSM schemes at all 436 

four soil layers, there is an overall downward and then stabilised trend. Overall for Noah, the 437 

simulated surface layer soil moisture provides better landslide monitoring performance than the 438 

rest of the soil layers from 1% to 35% exceedance probabilities; and the scheme’s worst 439 

performance is observed at the third soil layer centred at 70 cm. The values of d for Noah’s second 440 

and fourth layer are quite close to each other. For Noah-MP, the simulated surface layer soil 441 

moisture gives the best performance amongst all four soil layers for most cases between the 1% 442 

and 35% exceedance probability range; and the scheme’s worst performance is observed at the 443 

fourth layer. Unlike Noah, all four soil layers from the Noah-MP scheme provide distinct 444 

performance amongst them (i.e., larger d difference). For CLM4, the performance for the surface 445 

layer is quite similar to the second layer’s, and the differences amongst the four layers are small. 446 

From the Table 5, it can be seen for Noah the most suitable exceedance probabilities (i.e., the 447 

highlighted numbers) range between 35% to 50%; for Noah-MP they are between 30% and 50%; 448 

and for CLM4 it stays at 40% for all four soil layers. For both Noah and Noah-MP, the best 449 

performance is observed at the surface layer (d = 0.392 and d = 0.369, respectively), which is in 450 

line with their correlation coefficient results against the in-situ observations (i.e., the best r value 451 

for both LSM schemes is found at the surface layer). Furthermore, the best performance for Noah 452 

and Noah-MP follows a regular trend, that is the deeper the soil layer, the poorer the landslide 453 

monitoring performance. For CLM4, the best performances show no distinct pattern amongst soil 454 

layers (i.e., with the best performance found at the soil layer 3, followed by layer 2, 1, and 4). Of 455 
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all the LSM schemes and soil layers, the best performance is found for Noah-MP at the surface 456 

layer with 30% exceedance probability (d=0.369). The ROC curve for the Noah-MP scheme at the 457 

surface layer is shown in Figure 9. In the curve, each point represents a scenario with a selected 458 

exceedance probability level. It is clear with various exceedance probabilities, FAR can be 459 

decreased without sacrificing the HR score (e.g., 4% to 10% exceedance probabilities). At the 460 

optimal point at the 30% exceedance probability, the best results for HR and FAR are observed as 461 

0.769 and 0.289, respectively.  462 

6. Discussions and Conclusion  463 

In this study, the usability of WRF modelled soil moisture for landslide monitoring has been 464 

evaluated in the Emilia Romagna region based on the research duration between 2006 and 2015. 465 

Specifically, four-layer soil moisture information simulated through the WRF’s three most 466 

advanced LSM schemes (i.e., Noah, Noah-MP and CLM4) are compared for the purpose. Through 467 

the temporal comparison with the in-situ soil moisture observations, it has been found that all three 468 

LSM schemes at all four soil layers can produce soil moisture’s seasonal cycle very well. However, 469 

only Noah-MP is able to simulate the large soil drying phenomenon close to the observations 470 

during the drying season, and it also gives the highest correlation coefficient and the lowest RMSE 471 

at most soil layers amongst the three LSM schemes. For landslide threshold build up, slope 472 

information is useful in identifying threshold differences, with threshold becoming smaller for 473 

steeper area. In other words, dryer soil indeed can trigger landslides in steeper slopes than in milder 474 

slopes. The result is not surprising, as the slope angle is an importance element of influencing the 475 

stabilities of earth materials. Further studies based on slope angle condition is then carried out. 17 476 

various exceedance probably levels between 1% and 50% are adopted to find the optimal threshold 477 

scenario. Through the ROC analysis of 612 threshold models, the best performance is obtained by 478 
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the Noah-MP at the surface soil layer with 30% exceedance probability. The outstanding 479 

performance of the Noah-MP scheme at the surface layer is also in accordance with its high 480 

correlation coefficient result found against the in-situ observations. 481 

It should be noted that weighting factors are not considered in the evaluation of the threshold 482 

models. Nevertheless, in real-life situations, weighting could play important roles during the final 483 

decision making. As for instance, the damages resulted from a missing alarm event could be much 484 

more devastating than a false alarm event, or vice versa, and the situation also varies in different 485 

regions. Therefore, during operational applications, weighting factors should be considered.  486 

Model-based soil moisture estimations could be affected by error accumulation issues, especially 487 

in the real-time forecasting mode. A potential solution is to use data assimilation methodologies 488 

to correct such errors by intaking soil moisture information from other data sources. Since in-situ 489 

soil moisture sensors are only sparsely available in limited regions, soil moisture measured via 490 

satellite remote sensing technologies could provide useful alternatives. Another issue is with the 491 

landslide record data, since most of them are based on human experiences (e.g., through 492 

newspapers, and victims), a lot of incidences could be unreported. Therefore, the conclusion made 493 

here could be biased. One way of expanding the current landslide catalog can depend on automatic 494 

landslide detection methods based on remote sensing images.    495 

In summary, this study gives an overview of the soil moisture performance of three WRF LSM 496 

schemes for landslide hazard assessment. We demonstrate that the surface soil moisture (centred 497 

at 10 cm) simulated through the Noah-MP LSM scheme is useful in predicting landslide 498 

occurrences in the Emelia Romagna region. The high hitting rate of 0.769 and the low false alarm 499 

rate of 0.289 obtained in this study show such valuable soil moisture information could work in 500 

addition to the rainfall data to provide an efficient landslide early warning system at the regional 501 
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scales. However, one must bear in mind that the results demonstrated in this study are only valid 502 

for the selected region. In order to make a general conclusion, more researches are needed. 503 

Particularly, a considerable number of catchments with a broad spectrum of climate and 504 

environmental conditions will need to be investigated.   505 
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Table 1. Comparison of Noah, Noah-MP, and CLM4.  

 Noah Noah-MP CLM4 

Energy balance  Yes Yes Yes  

Water balance Yes Yes Yes  

No. of soil layers 4 4 10 

Depth of total soil 

column 

2.0 m 2.0 m 3.802 m 

Model soil layer 

thickness 

0.1, 0.3, 0.6, 1.0 m 0.1, 0.3, 0.6, 1.0 m 0.018, 0.028, 0.045, 

0.075, 0.124, 0.204, 

0.336, 0.553, 0.913, 

1.506 m 

No. of vegetation 

layers 

A single combined 

surface layer of 

vegetation and snow 

Single layer Single layer 

Vegetation Dominant vegetation 

type in one grid cell 

with prescribed LAI 

Dominant vegetation 

type in one grid cell 

with dynamic LAI 

Up to 10 vegetation 

types in one grid cell 

with prescribed LAI 

No. of snow layers A single combined 

surface layer of 

vegetation and snow 

Up to three layers Up to five layers 
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Table 2. WRF parameterizations used in this study 

 Settings/ Parameterizations References  

Map projection  Lambert  

Central point of domain  Latitude: 44.54; Longitude: 11.02  

Latitudinal grid length  5 km  

Longitudinal grid length 5 km  

Model output time step  Daily  

Nesting  Two-way  

Land surface model Noah, Noah-MP, CLM  

Simulation period 1/1/2006 – 31/12/2015  

Spin-up period  1/1/2005 – 31/12/2005  

Microphysics  New Thompson (Thompson et al., 2008) 

Shortwave radiation  Dudhia scheme (Dudhia, 1989) 

Longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997) 

Surface layer Revised MM5 (Jiménez et al., 

2012;Chen and Dudhia, 

2001) 

Planetary boundary layer Yonsei University method (Hong et al., 2006) 

Cumulus Parameterization Kain-Fritsch (new Eta) scheme (Kain, 2004) 
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Table 3. Statistical summary of the WRF performance in simulating soil moisture for different 

soil layers, based on comparison with the in-situ observations. 

 R RMSE (m3/m3) 

 0.10 m 0.25 m 0.70 m 1.50 m 0.1 m 0.25 m 0.70 m 1.50 m 

Noah 0.728 0.645 0.660 0.430 0.123 0.125 0.141 0.055 

Noah-MP 0.809 0.683 0.738 0.498 0.060 0.070 0.088 0.092 

CLM 0.789 0.743 0.648 0.287 0.089 0.087 0.123 0.089 
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Table 4. Rainfall events information. 
Starting date  Ending date 

Duration  

(days) 

Rainfall  

intensity 

(mm/day) 

Number of 

Landslide 

events 
Year Month Day 

 
Year Month Day 

2014 1 13  2014 1 24 12 20.50 2 

2014 1 28  2014 2 14 18 13.61 0 

2014 2 26  2014 3 6 9 13.35 0 

2014 3 22  2014 3 27 6 11.08 0 

2014 4 4  2014 4 5 2 18.98 0 

2014 4 27  2014 5 4 8 12.13 0 

2014 5 26  2014 6 3 9 5.05 0 

2014 6 14  2014 6 16 3 18.29 0 

2014 6 25  2014 6 30 6 11.39 0 

2014 7 7  2014 7 14 8 7.84 0 

2014 7 21  2014 7 30 10 15.35 0 

2014 8 31  2014 9 5 6 5.67 0 

2014 9 10  2014 9 12 3 11.84 0 

2014 9 19  2014 9 20 2 23.04 0 

2014 10 1  2014 10 1 1 14.51 0 

2014 10 10  2014 10 17 8 13.01 0 

2014 11 4  2014 11 18 15 18.28 0 

2014 11 25  2014 12 7 13 7.58 0 

2014 12 13  2014 12 16 4 6.24 0 

2015 1 16  2015 1 17 2 14.87 0 

2015 1 21  2015 1 23 3 7.13 0 

2015 1 29  2015 2 10 13 9.98 0 

2015 2 13  2015 2 17 5 6.62 1 

2015 2 21  2015 2 26 6 11.84 4 

2015 3 3  2015 3 7 5 11.69 1 

2015 3 15  2015 3 17 3 9.00 0 

2015 3 21  2015 3 27 7 12.09 2 

2015 4 3  2015 4 5 3 16.62 0 

2015 4 17  2015 4 18 2 6.99 0 

2015 4 26  2015 4 29 4 11.23 0 

2015 5 15  2015 5 16 2 8.83 0 

2015 5 20  2015 5 27 8 10.58 1 

2015 6 8  2015 6 11 4 6.47 0 

2015 6 16  2015 6 19 4 13.44 0 

2015 6 23  2015 6 24 2 6.07 0 

2015 7 22  2015 7 25 4 6.05 0 

2015 8 9  2015 8 10 2 24.69 0 

2015 8 15  2015 8 19 5 10.69 0 

2015 8 23  2015 8 24 2 7.88 0 

2015 9 13  2015 9 14 2 24.66 1 

2015 9 23  2015 9 24 2 7.50 0 

2015 10 1  2015 10 7 7 13.73 0 

2015 10 10  2015 10 19 10 9.40 0 

2015 10 27  2015 10 29 3 20.33 0 

2015 11 21  2015 11 25 5 13.78 1 
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Table 5. Results of Euclidean distances (d) between individual points and the optimal point for 

ROC analysis are listed. The best performance (i.e., lowest d) for each column (i.e., each soil 

layer of an LSM scheme) is highlighted. The optimal performance of all is highlighted in red.  

 Noah Noah-MP CLM4 

e.p. (%). 10 cm 25 cm 70 cm 150 cm 10 cm 25 cm 70 cm 150 cm 10 cm 25 cm 70 cm 150 cm 

1 0.942  0.971  0.962  0.947  0.857  0.937  0.897  0.963  0.942  0.939  0.978  0.975  

2 0.906  0.945  0.963  0.923  0.854  0.912  0.883  0.959  0.923  0.922  0.959  0.952  

3 0.889  0.924  0.961  0.915  0.849  0.855  0.838  0.952  0.870  0.874  0.940  0.947  

4 0.884  0.898  0.946  0.914  0.838  0.814  0.829  0.924  0.831  0.843  0.925  0.947  

5 0.860  0.875  0.924  0.896  0.820  0.793  0.812  0.908  0.791  0.822  0.915  0.921  

6 0.835  0.854  0.910  0.874  0.803  0.785  0.800  0.905  0.770  0.817  0.911  0.909  

7 0.827  0.861  0.902  0.858  0.777  0.767  0.791  0.889  0.753  0.801  0.902  0.900  

8 0.816  0.849  0.889  0.851  0.745  0.765  0.782  0.876  0.745  0.785  0.902  0.910  

9 0.790  0.827  0.878  0.834  0.706  0.732  0.766  0.871  0.742  0.777  0.864  0.904  

10 0.762  0.811  0.863  0.825  0.672  0.702  0.747  0.862  0.738  0.767  0.835  0.887  

15 0.615  0.741  0.839  0.763  0.560  0.629  0.716  0.835  0.702  0.700  0.729  0.790  

20 0.485  0.627  0.779  0.652  0.515  0.571  0.624  0.774  0.570  0.602  0.594  0.650  

25 0.432  0.544  0.728  0.512  0.403  0.465  0.574  0.736  0.509  0.522  0.471  0.509  

30 0.437  0.495  0.643  0.451  0.369  0.375  0.544  0.679  0.475  0.477  0.447  0.469  

35 0.392  0.446  0.592  0.436  0.390  0.404  0.411  0.498  0.441  0.435  0.428  0.430  

40 0.500  0.407  0.531  0.416  0.439  0.385  0.382  0.436  0.406  0.405  0.398  0.410  

50 0.552  0.425  0.404  0.411  0.489  0.417  0.416  0.429  0.437  0.435  0.408  0.437  
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Figure 1． Location of the Emilia Romagna Region with elevation map and in-situ soil moisture 

station also shown. 
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Figure 2. Landslide events with slope angle map.  
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Figure 3. a) Contingency table illustrates the four possible outcomes of a binary classifier model: 

TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative). b) ROC 

(Receiver Operating Characteristic) analysis with HR (Hitting Rate) against FAR (False Alarm 

Rate). 
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Figure 4. Soil moisture temporal variations of WRF simulations and in-situ observations for four 

soil layers at a) 10 cm; b) 25 cm; c) 70 cm; and d) 150 cm. 
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Figure 5. Spatial distribution of soil moisture at four soil layers (L1 = 10 cm; L2 = 25 cm; L3 = 

70 cm; L4 = 150 cm) from WRF model simulations for Noah (a, d, g, j), Noah-MP (b, e, h, k), 

and CLM4 (c, f, i, l), on the August 1, 2015 (dry season).  
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Figure 6. Spatial distribution of soil moisture at four soil layers (L1 = 10 cm; L2 = 25 cm; L3 = 

70 cm; L4 = 150 cm) from WRF model simulations for Noah (a, d, g, j), Noah-MP (b, e, h, k), 

and CLM4 (c, f, i, l), on the February 1, 2015 (wet season).  
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Figure 7. Threshold plots. For Noah (a, d, g, j), Noah-MP (b, e, h, k), and CLM4 (c, f, i, l) land 

surface schemes under three Slope angle Groups (S.G.) with S.G. 1 = 0.4-1.86o; S.G. 2 = 1.87-

9.61o; S.G. 3 = 9.52-40.43o. 
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Figure 8. d-scores.  
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Figure 9. ROC curve for the calculated thresholds using different exceedance probability levels 

(for Noah-MP at the surface layer). The no gain line and the optimal performance point (the red 

point) are also presented.  
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